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In this paper, we introduce and study a model of a Monod–Haldene type food chain
chemostat with seasonally variably pulsed input and washout. We investigate the sub-
system with substrate and prey and study the stability of the periodic solutions, which
are the boundary periodic solutions of the system. The stability analysis of the bound-
ary periodic solution yields an invasion threshold. By use of standard techniques of
bifurcation theory, we prove that above this threshold there are periodic oscillations
in substrate, prey and predator. Simple cycles may give way to chaos in a cascade of
period-doubling bifurcations. Furthermore, bifurcation diagrams have shown that there
exists complexity for the pulsed system including periodic doubling cascade, periodic
halving cascade and Pitchfork bifurcations and tangent bifurcations.

KEY WORDS: Monod–Haldene growth rate, chemostat, seasonally variably pulsed
input and washout, chaos.
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1. Introduction and the model

A chemostat is a common laboratory apparatus used to culture microor-
ganisms. Sterile growth medium enters the chemostat at a constant rate; the
volume within the chemostat is held constant. In its simplest form, the system
approximates conditions for plankton growth in lakes, where the limiting nutri-
ents such as silica and phosphate are supplied from streams draining the water-
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shed. As seasons change, stream drainage patterns change causing variations in
the supply of nutrients and the washout of lakes. Recently many papers studied
chemostat model with variations in the supply of nutrients or the washout. Che-
mostat with periodic inputs are studied in [1–5], those with periodic washout
rate in [6, 7], and those with periodic input and washout in [8]. We all know
that nutrients are inputted into lakes and lakes are washed out when rain is fall-
ing. In fact, raining is not continuous. It occurs seasonally or in regular pulses.
Thus, it is natural to describe this case in impulsive differential equations. In the
present paper, we consider the dynamics of a bi-trophic food chain model in a
chemostat seasonally variably pulsed input and washout, which incorporate the
Monod–Haldene type growth rate. Without loss of generality, we assume that
the rains occur seasonally at k-times (k ∈ N ) in every year T . The model takes
the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −µ1

δ1

SH

(A1 + S + B1S2)
,

dH

dt
= µ1SH

A1 + S + B1S2
− µ2

δ2

H P

(A2 + H + B2 H2)
,

dP

dt
= µ2 H P

A2 + H + B2 H2
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

t �= nT + Ti ,

(i = 1, 2, . . . , k; n ∈ N )

�S = Di (S0 − S),

�H = −Di H,

�P = −Di P,

⎫
⎬

⎭

t = nT + Ti ,

(i = 1, 2, . . . , k; n ∈ N ),

(1.1)

where T is the period of the impulsive effect and 0 < T1 < T2 < · · · < Tk = T are
the times of the impulsive effects in per period T . where S(t) denotes the con-
centration of nutrient at time t; H(t) denotes the concentration of prey at time
t; P(t) denotes the concentration of predator at time t; S0 denotes the input con-
centration of the nutrient each time; 0 < Di < 1 (i = 1, 2, . . . , k) are the wash-
out proportion of the chemostat each time nT +Ti , respectively; δ1 and δ2 denote
the yield constants of unit mass of prey and predator; b1, b2 are half capturing
saturation constants of prey and predator; µ1 and m2 denote the predation con-
stants of prey and predator, respectively. n ∈ N , N is the set of all non-negative
integers.

The theory of impulsive differential equation appears as a natural descrip-
tion of several real processes subject to certain perturbations whose duration
is negligible in comparison with the duration of the process. Recently, equa-
tions of this kind are found in a almost every domain of applied sciences.
Numerous examples are given in Bainov’s and his collaborator’s books [9, 10].
Some impulsive differential equations have been recently introduced in popula-
tion dynamics in relation to: impulsive birth [11], impulsive vaccination [12, 13],
chemotherapeutic treatment of disease [14] and population ecology [15–17].
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Recently the models of predator-prey system in periodic forcing and
impulsive effect environments have attracted new attention because of their pro-
pensity for chaos ([15–17]). Liu and Chen [15], Zhang et al. [16] have studied
predator-prey system with Holling type-II [15] and type-IV [16] with impulsive
perturbations on the predator, and the impulsive perturbations bring to the sys-
tem complexity. Wang et al. [17] studied the three food chain with impulsive
effects on top predator, and the impulsive perturbations also bring to these sim-
ple system chaotic solutions. In this paper, we want to investigate the complexity
of system (1.1).

There are advantages in analyzing dimensionless equations. We take vari-
able changes as following

x ≡ S

S0
, y ≡ H

δ1S0
, z ≡ P

δ1δ2S0
.

After some algebra, this yields
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= − m1xy

1 + a1x + b1x2
,

dy

dt
= m1xy

1 + a1x + b1x2
− m2 yz

1 + a2 y + b2 y2
,

dz

dt
= m2 yz

1 + a2 y + b2 y2
,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= nτ + τi , (i = 1, 2, . . . , k),

�x = di (1 − x),

�y = −di y,

�z = −di z.

⎫
⎬

⎭
t = nτ + τi , (i = 1, 2, . . . , k).

(1.2)

with

m1 = µ1S0

A1
, m2 = µ2 S0

A2
, a1 = S0

A1
, a2 = S0

A2
, b1 = B1S2

0 )

A1
,

b2 = B2δ
2
1 S2

0

A2
, τ = T, di = Di , τi = Ti , (i = 1, 2, . . . , k).

For convenance, through this paper, we denote d0 = 0 and τ0 = 0.
The organizations of the paper are as following. In next section, we inves-

tigate the existence and stability of the periodic solutions of the impulsive sub-
system with substrate and prey. In Section 3, we study the locally stability of
the boundary periodic solution of the system and obtain the threshold of the
invasion of the predator. By use of standard techniques of bifurcation theory,
we prove that above this threshold there are periodic oscillations in substrate,
prey and predator. In Section 4, the bifurcation diagrams of different coefficients
show that with increasing the bifurcation parameters, there exists complexity for
the pulsed system including periodic doubling cascade, periodic halving cascade
and Pitchfork bifurcations and tangent bifurcations.
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2. Behavior of the substrate bacterium subsystem

In the absence of the protozan predator, system (1.2) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= − m1xy

1 + a1x + b1x2
,

dy

dt
= m1xy

1 + a1x + b1x2

⎫
⎪⎪⎬

⎪⎪⎭

t �= nτ + τi , (i = 1, 2, . . . , k),

�x = di (1 − x),

�y = −di y.

}

t = nτ + τi , (i = 1, 2, . . . , k).

(2.1)

This non-linear system has simple periodic solutions. For our purpose, we pres-
ent these solutions in this sections.

If we add the first and second equations of the system (2.1), we have
d(x+y)

dt
= 0. If we take variable changes s = x + y then the system (2.1) can

be rewritten
⎧
⎨

⎩

ds

dt
= 0, t �= nτ + τi , (i = 1, 2, . . . , k),

s(t+) = di + (1 − di )s(t), s(0) > 0, t = nτ + τi , (i = 1, 2, . . . , k).

(2.2)

For the system (2.2), we have the following lemma 2.1.

Lemma 2.1. The subsystem (2.2) has a positive periodic solution s̃(t) = 1 and for
every solution s(t) of (2.2) we have |s(t) − 1| → 0 as t → ∞, where s̃(t) = 1, t ∈
(nτ, (n + 1)τ ], n ∈ N .

By the lemma 2.1, the following lemma is obvious.

Lemma 2.2. Let (x(t), y(t)) be any solution of system (2.1) with initial condition
x(0) � 0, y(0) > 0, then limt→∞ |x(t) + y(t) − 1| = 0.

The lemma 2.2 says that the periodic solution s̃(t) = 1 is uniquely invariant
manifold of the system (2.1).

Theorem 2.1. For the system (2.1), we denote

m∗
1 := −(1 + a1 + b1)

∑k
i=1 ln(1 − di )

τ
.



F. Wang et al. / Analysis of a Monod–Haldene type food 605

(1) If m1 < m∗
1, then the system (2.1) has a unique globally asymptotically

stable positive τ -periodic solution (xe(t), ye(t)), where

xe(t) = 1, ye(t) = 0; (2.3)

(2) If m1 > m∗
1, then the system (2.1) has a unique globally asymptoti-

cally stable positive τ−periodic solution (xs(t), ys(t)) and the τ -periodic solution
(xe(t), ye(t)) is unstable. The τ -period positive solution ys(t) satisfies

exp(

∫ τ

0

m1(1 − ys(l))

1 + a1(1 − ys(l)) + b1(1 − ys(l))2
dl) =

k∏

i=1

1
1 − di

. (2.4)

Proof. By lemma 2.1, we can consider the system (2.1) in its stable invariant
manifold s̃(t) = 1, that is

⎧
⎨

⎩

dy

dt
= m1(1 − y)y

1 + a1(1 − y) + b1(1 − y)2
, t �= nτ + τi , (i = 1, 2, . . . , k),

�y = −di y, 0 < y0 � 1, t = nτ + τi , (i = 1, 2, . . . , k).

(2.5)

Suppose y(t, y0) is a solution of equation (2.5), with initial condition y0 ∈
[0, 1]. We have

y(t, y0) = y((nτ + τi )
+)

exp
(∫ t

nτ+τi

m1(1−y(l, y0))

1 + a1(1−y(l, y0)) + b1(1−y(l, y0))
2

dl

)

, t ∈ (nτ + τi , nτ + τi+1],
y((nτ + τi )

+) = (1 − di )y(nτ + τi ), y(0+) = y0, t = nτ + τi ,

(2.6)

For (2.5), we have the following properties:

(1) 0 < y(t, y0) < 1, t ∈ (0, ∞) is piecewise continuous function;

(2) The function F(y0) = y(t, y0), y0 ∈ (0, 1] is a increasing function;

(3) y(t, 0) = 0, t ∈ (0, ∞) is a solution .

The periodic solutions of (2.5) satisfy the following equation

y0 = y0

k∏

i=1

(1 − di ) exp
(∫ τ

0

m1(1 − y(l, y0))

1 + a1(1 − y(l, y0)) + b1(1 − y(l, y0))
2

dl

)

. (2.7)

By (i) and (ii), we know that if 1 <
∏k

i=1(1−di ) < exp(
m1τ

1+a1+b1
), that is m1 < m∗

1, the
equation (2.5) has a unique solution in (0, 1]; otherwise, it has no solution in (0, 1].

If m1 < m∗
1, then the equation (2.5) has stable periodic solution ye(t) = 0.

By lemma 2.2, we have limt→∞ |x(t) − s̃(t)| = 0. We have proved in (1).
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If m1 > m∗
1, then the equation (2.5) has uniquely positive periodic solution.

We denote this positive periodic solution

ys(t) = y(t, y∗
0 ), xs(t) = s̃(t) − y(t, y∗

0 ).

From (2.6), we obtain the formate (2.4) hold.
For proving the stability of the period solution ys(t), we define a function

G(y0) : y0 ∈ (0, 1) as following:

G(y0) =
k∏

i=1

(1 − di ) exp
(∫ τ

0

m1(1 − y(l, y0))

a1 + (1 − y(l, y0)) + b1(1 − y(l, y0))
2

dl

)

.

Noticing equation (2.5), we have

G(y0) = y(τ, y0)

y0
, y0 ∈ (0, 1). (2.8)

It is obvious that G(y∗
0 )) = 1.

Furthermore, ∂y(t,y0)
∂y0

� 0, t ∈ (0, τ ) is hold (otherwise, there exist t0 > 0, 0 <

y1 < y2 < 1 such that y(t0, y1) = y(t0, y2), that is a contradiction with the differ-
ent flows of system (2.5) not to intersect). So we obtain that the function G(y0)

have the following properties:

G(y0) < 1, i f y∗
0 < y0 < 1,

G(y0) = 1, i f y0 = y∗
0 ,

G(y0) > 1, i f 0 < y0 < y∗
0 .

(2.9)

Furthermore, we obtain the following equations

y0 > y(τ1, y0) > · · · > y(nτ + τi , y0) > y∗
0 , if y∗

0 < y0 � 1,

y0 < y(τ1, y0) < · · · < y(nτ + τi , y0) < y∗
0 , if ε � y0 < y∗

0 .
(2.10)

Set y0 ∈ (0, 1). According to (2.10), we suppose that

lim
n→∞ y(nτ, y0) = a.

We shall prove that the solution y(t, a) is τ -periodic. We note that the functions
yn(t) = y(t +nτ, y0), due to the τ -periodicity of equation (2.5), are also its solu-
tions and yn(0) → a as n → ∞. By the continuous dependence of the solutions
on the initial values we have that y(τ, a) = limn→∞ yn(τ ) = a. Hence the solu-
tion y(t, a) is τ -periodic. The periodic solution y(t, y∗

0 ) is unique, so a = y∗
0 .

Let ε > 0 be given. By the theorem 2.9 [9] on the continuous dependence
of the solutions on the initial values, there exists a δ > 0 such that

|y(t, y0) − y(t, y∗
0 )| < ε,
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if |y0 − y∗
0 | < δ and 0 � t � τ . Choose n1 > 0 so that |y(nτ, y0) − y∗

0 | < δ for
n > n1. Then |y(t, y0) − y(t, y∗

0 )| < ε for t > nτ which proves that

lim
n→∞ |y(t, y0) − y(t, y∗

0 )| = 0, y0 ∈ (0, s̃(0)].
For the system (2.1), by lemma 2.2 we obtain that for any solution (x(t), y(t))
with initial condition x(0) � 0, y(0) > 0, |x − xs | → 0, |y − ys | → 0 as t → ∞.

From the τ -period solution ys being globally asymptotically stable, we can
obtain that the multiplier µ of ys , which satisfies

µ = exp

(∫ τ

0

m1xs(l)(1 − b1x2
s (l))

1 + a1xs(l) + b1x2
s (l)

dl

)

< 1, (2.11)

where we have used (2.7). This conclusion will be used in the Section 3. We have
proved (2). �

3. Stability of the boundary periodic solution

In order to investigate the invasion of the predator of system (1.2), we add
the first, second and third equations of it and take variable changes s = x +y+z,
then we obtain the following system

⎧
⎨

⎩

ds

dt
= 0, t �= nτ + τi , (i = 1, 2, . . . , k),

s(t+) = di + (1 − di )s(t), s(0) > 0, t = nτ + τi , (i = 1, 2, . . . , k).

By the lemma 2.1, the following lemma is obvious.

Lemma 3.1. Let (x(t), y(t), z(t)) be any solution of system (1.2) with X (0) > 0,
then

lim
t→∞ |x(t) + y(t) + z(t) − 1| = 0. (3.1)

The lemma 3.1 says that the periodic solution s̃(t) = 1 is an invariant man-
ifold of the system (1.2).

By theorem 2.1, we know that the system system (1.2) has the nonnegative
boundary τ -period solutions

(xe(t), ye(t), 0) = (1, 0, 0), (xs(t), ys(t), 0) (i f m1 > m∗
1).

For convenance, in the following discussing if m1 > m∗
1, we denote that

m∗
2 := − ∑k

i=1(1 − di )
∫ τ

0
ys(l)

1+a2 ys(l)+b2 y2
s (l)

dl
.
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Theorem 3.1. Let (x(t), y(t), z(t)) be any solution of system (1.2) with X (0) > 0.

(1) If m1 < m∗
1, then the system (3.1) has a unique globally asymptotically

stable positive τ -periodic solution (1, 0, 0).

(2) If m1 > m∗
1 and m2 < m∗

2, then the system (1.2) has a unique glob-
ally asymptotically stable boundary τ -periodic solution (xs(t), ys(t), 0)

is globally asymptotical stable.

(3) If m1 > m∗
1 and m2 > m∗

2, then the periodic boundary solution
(1 − ys(t), ys(t), 0) of the system (1.2) is unstable.

Proof. The proof of (1) is easy, we want to prove (2) and (3). The local sta-
bility of periodic solution (xs(t), ys(t), 0) may be determined by considering the
behavior of small amplitude perturbations of the solution. Define

x(t) = u(t) + xs(t), y(t) = v(t) + ys(t), z(t) = w(t),

there may be written

⎛

⎝
u(t)
v(t)
w(t)

⎞

⎠ = Φi (t)

⎛

⎝
u(τ+

i−1)

v(τ+
i−1)

w(τ+
i−1)

⎞

⎠ τi−1 < t � τi , (i = 1, 2, . . . , k),

where Φi (t) satisfies

dΦi

dt
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− m1ys(1 − b1x2
s )

(1 + a1xs + b1x2
s )2

− m1xs
1+a1xs+b1x2

s
0

m1ys(1 − b1x2
s )

(1 + a1xs + b1x2
s )2

m1xs
1+a1xs+b1x2

s
− m2 ys

1+a2 ys+b2 y2
s

0 0 m2 ys
1+a2 ys+b2 y2

s

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Φi (t),

and Φi (τ
+
i−1) = I , the identity matrix. Hence the fundamental solution matrix is

Φi (τi ) =
⎛

⎜
⎝

φ1i (τi ) φ2i (τi ) ∗
φ3i (τi ) φ4i (τi ) ∗∗

0 0 exp
(∫ τi

τi−1

m2 ys(l)
1+a2 ys(l)+b2 y2

s (l)
dl

)

⎞

⎟
⎠ . (3.2)

It is no need to give the exact form of (∗) and (∗∗) as it is not required in the
analysis that follows. The linearization of impulsive subsystem (1.2) become

⎛

⎝
u(nτ+

i )

v(nτ+
i )

w(nτ+
i )

⎞

⎠ =
⎛

⎝
1 − di 0 0

0 1 − di 0
0 0 1 − di

⎞

⎠

⎛

⎝
u(nτi )

v(nτi )

w(nτi )

⎞

⎠ .
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We denote that

Mi =
⎛

⎝
(1 − di ) 0 0

0 (1 − di ) 0
0 0 (1 − di )

⎞

⎠ Φi (τi ), (i = 1, 2, . . . , k).

Hence, we obtain the fundamental solution matrix M is

M = Mk · · · M2 M1

=

⎛

⎜
⎜
⎝

φ11(τ ) φ12(τ ) ∗
φ21(τ ) φ22(τ ) ∗∗

0 0
∏k

i=1(1 − di ) exp
(

∫ τ

0
m2 ys(l)

1 + a2 ys(l) + b2 y2
s (l)

dl

)

⎞

⎟
⎟
⎠ .

The eigenvalues of the matrix M are µ3 = ∏k
i=1(1−di ) exp

( ∫ τ

0 (
m2 ys(l)

1+a2 ys(l)+b2 y2
s (l)

dl
)

and the eigenvalues µ1, µ2 of the following matrix
(

φ11(τ ) φ12(τ )

φ21(τ ) φ22(τ )

)

. (3.3)

The µ1, µ2 are also the multipliers the locally linearizing system of the sys-
tem (2.1) provided with m > m∗

1 at the asymptotically stable periodic solution
(xs(t), ys(t)), according to Theorem 2.1, we have that µ1 = µ2 = µ < 1.

If m2 < m∗
2, the

∏k
i=1(1 − di ) exp(

∫ τ

0
m2 ys(l)

1+a2 ys(l)
dl) < 1, the boundary peri-

odic solution (xs(t), ys(t), 0) of the system (1.2) is locally asymptotically stable.
We have that

z(t) = z0(

k∏

j=1

(1 − d j ))
n

i∏

j=1

(1 − d j )) exp
(∫ t

0

m2 ys(l)

1 + a2 ys(l) + b2 y2
s (l)

dl

)

,

t ∈ (nτ + τi , nτ + τi+1], i = 1, 2, . . . , k.

Hence we obtain that for any solution (x(t), y(t), z(t)) with X (0) > 0, z(t) → 0
as t → ∞. By limt→∞ |x(t) + y(t) + z(t) − s̃(t)| = 0, we have limt→∞ |x(t) +
y(t) − s̃(t)| = 0. Now using theorem 2.1, we have limt→∞ |y(t) − ys(t)| = 0 and
limt→∞ |x(t) − xs(t)| = 0.

If m2 > m∗
2, the (

∏k
i=1(1 − di )) exp(

∫ τ

0
m2 ys(l)

1+a2 ys(l)+b2 y2
s (l)

dl) > 1, the boundary
periodic solution (xs(t), ys(t), 0) of the system (1.2) is unstable. We complete the
proof. �

Let B denote the Banach space of piecewise continuous, τ -periodic functions
N : [0, τ ] → R2 and have points of discontinuity τi , (i = 1, 2, . . . , k), where they are
continuous from the left. In the set B introduce the norm |N |0 = sup0�t�τ |N (t)|
with which B becomes a Banach space with the uniform convergence topology.

For convenience, just like [18] we introduce the following lemma 3.2 and 3.3.
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Lemma 3.2. Suppose ai j ∈ B and 0 � d1i < 1, 0 � d2i < 1, (i = 1, 2, . . . , k).

(a) If
∏k

i=1(1−d2i ) exp(
∫ τ

0 a22(s)ds) �= 1,
∏k

i=1(1−d1i ) exp(
∫ τ

0 a11(s)ds) �= 1, then
the linear impulsive homogenous system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dy1
dt

= a11y1 + a12 y2,

dy2
dt

= a22 y2,

⎫
⎬

⎭
t �= nτ + τi , (i = 1, 2, . . . , k),

�y1 = −d1i y1,

�y2 = −d2i y2,

}

t = nτ + τi , (i = 1, 2, . . . , k).

(3.4)

has no nontrivial solution in B × B. In this case the nonhomogeneous system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx1
dt

= a11x1 + a12x2 + f1,

dx2
dt

= a22x2 + f2,

⎫
⎬

⎭
t �= nτ + τi , (i = 1, 2, . . . , k),

�y1 = −d1i y1,

�y2 = −d2i y2,

}

t = nτ + τi , (i = 1, 2, . . . , k).

(3.5)

has, for every ( f1, f2) ∈ B × B, a unique solution (x1, x2) ∈ B × B and the
operator L : B × B → B × B defined by (x1, x2) = L( f1, f2) is linear and
compact. If we define that

{
dx2
dt

= a22x2 + f2, t �= nτ + τi , (i = 1, 2, . . . , k).

�y2 = −d2i y2, t = nτ + τi , (i = 1, 2, . . . , k).

has a unique solution x2 ∈ B and the operator L2 : B → B defined by x2 =
L2 f2 is linear and compact. Furthermore, the equation

{
dx1
dt

= a11x2 + f1, t �= nτ + τi , (i = 1, 2, . . . , k).

�y1 = −d1i y1, t = nτ + τi , (i = 1, 2, . . . , k).

for f3 ∈ B has a unique solution (since
∫ τ

0 a11(s)ds �= 0) in B and x1 = L1 f3
defines a linear, compact operator L1 : B → B. Then we have

L( f1, f2) ≡ (L1(a12L2 f2 + f1), L2 f2). (3.6)

(b) If
∏k

i=1(1−d2i ) exp(
∫ τ

0 a22(s)ds) = 1,
∏k

i=1(1−d1i ) exp(
∫ τ

0 a11(s)ds) �= 1, then
(3.4) has exactly one independent solution in B × B.
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Lemma 3.3. Suppose that a ∈ B, 0 � di < 1, (i = 1, 2, . . . , k),
∏k

i=1(1 −
di ) exp(

∫ τ

0 a(s)ds) = 1 and f ∈ B. Then the impulsive equation
{

dx
dt

= ax + f, t �= nτ + τi , (i = 1, 2, . . . , k),

�x = −di x, t = nτ + τi , (i = 1, 2, . . . , k).

has a solution x ∈ B if and only if
∫ τ

0 f (l)(exp(− ∫ l
0 a(s)ds))dl = 0.

By the lemma 3.1, in its invariant manifold s̃ = x(t) + y(t) + z(t) = 1, the
system (1.2) reduce to a equivalently nonautonomous system as following

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dy
dt

= m1(1−y−z)y
1+a1(1−y−z)+b1(1−y−z)2 − m2 yz

1+a2 y+b2 y2 ,

dz
dt

= m2 yz
1+a2 y+b2 y2 ,

⎫
⎬

⎭

t �= nτ + τi ,

(i = 1, 2, . . . , k).

�y = −di y,

�z = −di z,

}
t = nτ + τi ,

(i = 1, 2, . . . , k).

y(0) > 0, z(0) � 0, y(0) + z(0) � 1,

(3.7)

If m1 > m∗
1, for the system (3.7), by the theorem 3.1 the boundary periodic solu-

tion (ys(t), 0) is locally asymptotically stable provided with m2 < m∗
2, and it is

unstable provided with m2 > m∗
2, hence the value m∗

2 practises as a bifurcation
threshold. For the system (3.7), we have the following results.

Theorem 3.2. For the system (3.7), m1 > m∗
1 and 1−b2 y2

s (t) � 0 (t ∈ [0, τ ]) hold,
then there exists a constance λ0 > 0, such that for each m2 ∈ (m∗

2, m∗
2 + λ0),

there exists a solution (y, z) ∈ B × B of (3.7) satisfying 0 < y < ys, z > 0 and
x = 1 − y − z > 0 for all t > 0. Hence, the system (1.2) has a positive τ -periodic
solution (1 − y − z, y, z).

Proof. Let x1 = y − ys(t), x2 = z in (3.7), then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx1
dt

= F11(xs, ys)x1 − F12(m2, xs, ys)x2 + g1(x1, x2),

dx2
dt

= F22(m2, ys)x2 + g2(x1, x2),

⎫
⎬

⎭

t �= nτ + τi
(i = 1, 2, . . . , k)

�x1 = −dx1
�x2 = −dx2

}
t = nτ + τi ,

(i = 1, 2, . . . , k),

(3.8)

where

F11(xs, ys) = m1xs

1 + a1xs + b1x2
s

− m1(1 − b1x2
s )ys

(1 + a1xs + b1x2
s )2

,

F12(m2, xs, ys) = m1(1 − b1x2
s )ys

(1 + a1xs + b1x2
s )2

+ m2 ys

1 + a2 ys + b2 y2
s
,

F22(m2, ys) = m2 ys

1 + a2 ys + b2 y2
s
.
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We know that
∏k

i=1(1 − di ) exp(
∫ τ

0
m2 ys(l)

1+a2 ys(l)+b2 y2
s (l)

dl) �= 1, by the lemma 3.2,
using L we can equivalently write the system (3.8) as the operator equation

(x1, x2) = L∗(x1, x2) + G(x1, x2), (3.9)

where

L∗(x1, x2) = (L1(−F12(m2, xs, ys)L2x2), −L2x2),

G(x1, x2) = (L1(−F12(m2, xs, ys)g2(x1, x2) + g1(x1, x2)), L2g2(x1, x2)).

Here L∗ : B× B → B× B is linear and compact and G : B× B → B× B is contin-
uous and compact (since L1 and L2 are compact) and satisfies G = o(|(x1, x2)|0)
near (0, 0). A nontrivial solution (x1, x2) �= (0, 0) for some m2 > 1 yields a solu-
tion (y, z) = (ys + x1, x2) of the system (3.7). Solutions (y, z) �= (ys, 0) will be
called nontrivial solutions of system (3.7).

We apply well-known local bifurcation techniques to (3.9). As is well
known, bifurcation can occur only at the nontrivial solution of the linearized
problem

(y1, y2) = L∗(y1, y2), m2 > 0. (3.10)

If (y1, y2) ∈ B × B is a solution of (3.10) for some m2 > 0, then by the very
manner in which L∗ was defined, (y1, y2) solves the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx1
dt

= F11(xs, ys)x1 − F12(m2, xs, ys)x2,

dx2
dt

= F22(m2, ys)x2,

⎫
⎬

⎭
t �= nτ + τi , (i = 1, 2, . . . , k),

�x1 = −di x1,

�x2 = −di x2,

}

t = nτ + τi , (i = 1, 2, . . . , k).

(3.11)

and conversely. Using Lemma 3.2 (b), we see that (3.11) and hence (3.10) has
one nontrivial solution in B × B if and only if m2 = m∗

2. Hence there exists a
continuum C = {(m2; x1, x2)} ⊆ (0, ∞) × B × B nontrivial solutions of (3.10)
such that the closure C̄ contains (m∗

2; 0, 0). This continuum gives rise to a con-
tinuum C1 = {(m2; y, z)} ⊆(0, ∞)× B × B of the solutions of (3.7) whose closure
C̄1 contains the bifurcation point (m∗

2; ys, 0).
To see that solutions in C1 correspond to solutions (y, z) of (3.7), we inves-

tigate the nature of the continuum C near the bifurcation point (m∗
2; 0, 0) by

expending m2 and (x1, x2) in Lyapunov-Schmidt series:

m2 = m∗
2 + λε + · · · ,

x1 = x11ε + x12ε
2 + · · · ,

x2 = x21ε + x22ε
2 + · · · ,
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for xi j ∈ B where ε is a small parameter. If we substitute these series into the
differential system (3.7) and equate coefficients of ε and ε2 we find that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx11
dt

= F11(xs, ys)x11 − F12(m2, xs, ys)x21,

dx21
dt

= F22(m2, ys)x21,

⎫
⎬

⎭

t �= nτ + τi ,

(i = 1, 2, . . . , k),

�x11 = −di x11,

�x21 = −di x21,

}
t = nτ + τi ,

(i = 1, 2, . . . , k),

(3.12)

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
12 = F11(xs, ys)x12 − F12(m∗

2, xs, ys)x22 + G12(x11, x21, λ),

x ′
22 = F22(m∗

2, ys)x22 + x21
a2+ys+b2 y2

s

(

λys + m∗
2(1−b2 y2

s )x11

1+a2 ys+b2 y2
s

)

,

⎫
⎬

⎭

t �= nτ + τi ,

(i = 1, 2, . . . , k),

�x12 = −di x12,

�x22 = −di x22,

}
t = nτ + τi ,

(i = 1, 2, . . . , k),

respectively. Thus, (x11, x21) ∈ B × B must be a solution of (3.10). We choose the
specific solution satisfying the initial conditions x21(0) = 1. Then

x21 =
i−1∏

j=0

(1 − d j )exp

(∫ t

nτ

(
m∗

2 ys(l)

1 + a2 ys(l) + b2 y2
s (l)

)dl

)

> 0,

nτ + τi−1 < t � nτ + τi ,

x21(0) = 1.

Moreover x11 < 0 for all t, (since m1>m∗
1 and (2.11), hence

∫ τ

0
m1xs(1−b1x2

s )

1+a1xs+b1x2
s

dl<0,
which implies that the Green’s function for first equation in (3.11) is positive).
Using Lemma 3.3, we find that

λ = −
∫ τ

0
m∗

2x11(t)x21(t)(1−b2 y2
s (t))

(1+a2 ys(t)+b2 y2
s (t))2 exp

(
− ∫ t

0
m∗

2 ys(l)

1+a2 ys(t)+b2 y2
s (t)

dl
)

dt
∫ τ

0
x21 ys

1+a2 ys(t)+b2 y2
s (t)

exp
(
− ∫ t

0
m∗

2 ys(l)

1+a2 ys(t)+b2 y2
s (t)

dl
)

dt
> 0,

provided with 1 − b2 y2
s (t) � 0. Thus we see that near the bifurcation point

(m∗
2; 0, 0) (say, for 0 < |m2 − m∗

2| = λ|ε| < λ0 ) the continuum C has two (sub-
continua) branches corresponding to ε < 0, ε > 0 respectively:

C+ = {(m2; x1, x2) : m∗
2 < m2 < m∗

2 + λ0, x1 < 0, x2 > 0},
C− = {(m2; x1, x2) : m∗

2 − λ0 < m2 < m∗
2, x1 > 0, x2 < 0}.

The solution is on C+ which prove the theorem, since λ > 0 is equivalent to
m2 > m∗

2. We have left only to show that y = x1 + ys > 0 for all t. This is
easy, for if λ0 is small, then y is near ys in the sup norm of B; thus since ys is
bounded away from zero, so is y. At same time, by theorem 3.1, for the system
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Figure 1. Bifurcation diagrams of system (1.2) with m2 = 8, a1 = 0.2, a2 = 0.3, b1 = 0.1,

b2 = 0.3, d1 = 0.9, d2 = 0.8, τ1 = 0.4τ, τ2 = τ = 8 and 0.2 < m1 � 12.2 and initial values
x0 = 0.5, y0 = 0.7, z0 = 0.05.

(1.2), y is near ys means that x is near xs ; thus x = 1− y − z > 0. We notice that
the periodic solution (y, z) is τ -periodic. So x = 1− y−z is piecewise continuous
and τ -periodic. We complete the proof. �

4. Chemostat chaos

In this section, we will analyze the complexity of the impulsive system (1.2).
By theorem 2.1, 3.1 and 3.2, we know that if m1 < m∗

1, the periodic solution
(s̃(t), 0, 0) is globally asymptotically stable; if m1 > m∗

1 and m2 < m∗
2, then

the (xs(t), ys(t), 0) is globally asymptotically stable. According to Theorem 3.2,
if m1 > m∗

1 and m2 > m∗
2, the predator begins to invade the system.

We want to investigate the influence of m1. In the system (1.2), set m2 = 8,

a1 = 0.2, a2 = 0.3, b1 = 0.1, b2 = 0.3, d1 = 0.9, d2 = 0.8, τ1 = 0.4τ, τ2 = τ = 8
and 0.2 < m1 � 12.2. The influences of m1 may be documented by stroboscopi-
cally sampling some of the variables over a range of m1 values. We numerically
integrated system (1.2) for 500 pulsing cycles at each value of m1. For each m1,
we plotted the last 200 measures of the prey y and the predator z. Since we sam-
pled at the forcing period, periodic solutions of period τ appear as fixed points,
periodic solutions of period 2τ appear as two cycles, and so forth. The result-
ing bifurcation diagrams (figure 1) clear show that: with increasing m1 from 0.2
to 12.2, the system experiences process of cycles → periodic doubling cascade
→chaos → cycles → periodic doubling cascade →chaos → periodic halfing cas-
cade → cycles, which is characterized by (1) period doubling, (2) period halfing.

When m1 is small (m1 < q0 ≈ 0.66), the solution (1, 0, 0) is stable. When
m1 > q0, the prey begins invade the system and the solution (xs, ys, 0) is sta-
ble if m1 < q1(> q0). When m1 > q1, the predator begins invade and a stable
positive period solution (figure 2(a))is bifurcated from (xs, ys, 0) if m1 < q2 ≈
0.9. However, when m1 > q2, the stability of τ -periodic solution is destroyed and
2τ -periodic solution occurs (figure 2(b)) and is stable if m1 < q3 ≈ 1.26. When
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Figure 2. Doubling bifurcation. (a)–(d) Phase portraits of τ , 2τ , 4τ -period solutions and chaotic
solution for m1= 0.8, 1.18, 1.302 and 1.361, respectively.

m1 > q4 ≈ 1.32, it is unstable and there is a cascade of period doubling bifur-
cations leading to chaos (figure 2 (c, d)). Continuously increasing m1 ≈ 2.2, the
chaotic solution suddenly shrinks to a τ -period solution and further the system
shows next doubling bifurcations. A typical chaotic oscillation is captured when
m1 = 2.98 (figure 3). When m1 > 5.18 is followed by a cascade of periodic hal-
fing bifurcations from chaos to cycles (figure 4). This periodic-doubling route to
chaos is the hallmark of the logistic and Ricker maps [19, 20] and has been stud-
ied extensively by Mathematicians [21]. Periodic halving is the flip bifurcation in
the opposite direction, which is also observed in [22].

It is obvious, from the resulting bifurcation diagrams figure 1, we observe
that there exists more than one attractor for the same m1. In such a case, the
state that the system will reach depends on its initial value. An example of two
different stable states, a τ -period attractor and a strange attractor, observed for
the same values of impulsive period, is shown in figure 5.

We want to investigate the influence of m2. Set m1 = 6, a1 = 0.2, a2 =
0.2, b1 = 0.1, b2 = 0.3, d1 = 0.9, d2 = 0.8, τ1 = 0.4τ, τ2 = τ = 8 and
1 < m2 � 18.8. We numerically integrated system (1.2) for 500 pulsing cycles
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Figure 3. A strange attractor: (a) phase portrait of system (1.2) of m1=2.98, (b) time series of y
solution with initial values x0 = 0.5, y0 = 0.7, z0 = 0.05.

Figure 4. Halving bifurcation. (a)–(d) Phase portraits of 6τ , 3τ , 2τ and τ -period solutions for
m1 = 9.06, 9.38, 10 and 11.8, respectively.
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Figure 5. Coexistence of a strange attractor with a 2τ -periodic solution when m1 = 4.18: (a)
a strange attractor with (x(0),y(0),z(0)) = (0.5, 0.7, 1.8), (b) a τ -periodic solution with (x(0),y(0),

z(0) =(0.5, 1.7, 0.02).

Figure 6. Bifurcation diagrams of system (1.2) with m1 = 6, a1 = 0.2, a2 = 0.2, b1 = 0.1,

b2 = 0.3, d1 = 0.9, d2 = 0.8, τ1 = 0.4τ, τ2 = τ = 8 and 1 < m2 � 18.8 and initial values
x0 = 0.5, y0 = 0.7, z0 = 0.05.

at each value of m2. For each m2, we plotted the last 200 stroboscopic measures
of the prey y and the predator z. The resulting bifurcation diagrams (figure 6)
clear show that: with increasing m2 from 0.2 to 18.8, the system experiences pro-
cess two time’s periodic doubling bifurcations. Comparable changes occur with
an increase in the pulse period τ . Set m1 = 6, m2 = 8, a1 = 0.2, a2 = 0.2, b1 =
0.1, b2 = 0.3, d1 = 0.9, d2 = 0.8, τ1 = 0.4τ, τ2 = τ and 0.2 < τ � 18.2. The result-
ing bifurcation diagrams (figure 7) clear show that: with increasing τ from 0.2
to 18.2, the system also experiences process two time’s periodic doubling bifur-
cations.

Pitchfork bifurcations and tangent (saddle node) bifurcations are abun-
dantly evident in cycles in figures 1, 6 and 7, as well as attractor crises (the phe-
nomenon of “crisis" in which chaotic attractors suddenly appear or disappear,
or change size discontinuously as or change size discontinuously as a parame-
ter smoothly varies, was first extensively analyzed by Grebogi et al. [23]). For
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Figure 7. Bifurcation diagrams of system (1.2) with m1 = 6, m2 = 8, a1 = 0.2, a2 = 0.2, b1 = 0.1,

b2 = 0.3, d1 = 0.9, d2 = 0.8, τ1 = 0.4τ, τ2 = τ and 0.2 < τ � 18.2 and initial values x0 = 0.5,

y0 = 0.7, z0 = 0.05.

instance, in figure 7, when the forcing period τ is slightly increased beyond τ =
9.17, the chaotic attractor abruptly disappears, thus constituting a type of crisis.

5. Conclusions

In this paper, we introduce and study a model of a predator-prey system
with Monod–Haldene type functional response with seasonally variably pulsed
input and washout. Firstly we find the invasion threshold of the prey, which is

m∗
1 := −(1+a1+b1)

∑k
i=1 ln(1−di )

τ
. If m1 < m∗

1, the periodic periodic solution (1, 0, 0)

is globally asymptotically stable and if m1 > m∗
1, the prey starts to invade the

system. Furthermore, by using Floquet theorem and small amplitude perturba-

tion skills, we have proved that if m1 > m∗
1, there exists m∗

2 := − ∑k
i=1 ln(1−di )

∫ τ
0

ys (l)

1+a2 ys (l)+b2 y2
s (l)

dl

to play as the invasion threshold of the predator, that is to say, if m2 < m∗
2

the boundary solution (xs, ys, 0) is globally asymptotically stable and if m2 >

m∗
2 the solution (xs, ys, 0) is unstable. By using standard techniques of bifurca-

tion theory, we prove that above this threshold there are periodic oscillations in
substrate, prey and predator.

Choosing different coefficients m1, m2 and pulsed period τ as bifurcation
parameters, we have obtained bifurcation diagrams (figure 1, 6, 7). Bifurcation
diagrams have shown that there exists complexity for system (1.2) including peri-
odic doubling cascade, periodic halving cascade and Pitchfork bifurcations and
tangent bifurcations. Further, we can conclude from the results obtained in the
paper that periodically pulsed input and washout make the food chain chemostat
occur with various kinds of periodic fluctuations, period-one attractors, multi-
period attractors and chaotic attractors. More than one stable state may exist
for the same parameter values. All these results show that dynamical behavior
of system (1.2) becomes more complex under periodically impulsive input and
washout.
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